3.443 \(\int \frac{x^3 (c+d x)^{5/2}}{a+b x} \, dx\)

Optimal. Leaf size=209 \[ \frac{2 a^3 (b c-a d)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x}}{\sqrt{b c-a d}}\right )}{b^{13/2}}-\frac{2 a^3 \sqrt{c+d x} (b c-a d)^2}{b^6}-\frac{2 a^3 (c+d x)^{3/2} (b c-a d)}{3 b^5}-\frac{2 a^3 (c+d x)^{5/2}}{5 b^4}+\frac{2 (c+d x)^{7/2} \left (a^2 d^2+a b c d+b^2 c^2\right )}{7 b^3 d^3}-\frac{2 (c+d x)^{9/2} (a d+2 b c)}{9 b^2 d^3}+\frac{2 (c+d x)^{11/2}}{11 b d^3} \]

[Out]

(-2*a^3*(b*c - a*d)^2*Sqrt[c + d*x])/b^6 - (2*a^3*(b*c - a*d)*(c + d*x)^(3/2))/(
3*b^5) - (2*a^3*(c + d*x)^(5/2))/(5*b^4) + (2*(b^2*c^2 + a*b*c*d + a^2*d^2)*(c +
 d*x)^(7/2))/(7*b^3*d^3) - (2*(2*b*c + a*d)*(c + d*x)^(9/2))/(9*b^2*d^3) + (2*(c
 + d*x)^(11/2))/(11*b*d^3) + (2*a^3*(b*c - a*d)^(5/2)*ArcTanh[(Sqrt[b]*Sqrt[c +
d*x])/Sqrt[b*c - a*d]])/b^(13/2)

_______________________________________________________________________________________

Rubi [A]  time = 0.426761, antiderivative size = 209, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2 \[ \frac{2 a^3 (b c-a d)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x}}{\sqrt{b c-a d}}\right )}{b^{13/2}}-\frac{2 a^3 \sqrt{c+d x} (b c-a d)^2}{b^6}-\frac{2 a^3 (c+d x)^{3/2} (b c-a d)}{3 b^5}-\frac{2 a^3 (c+d x)^{5/2}}{5 b^4}+\frac{2 (c+d x)^{7/2} \left (a^2 d^2+a b c d+b^2 c^2\right )}{7 b^3 d^3}-\frac{2 (c+d x)^{9/2} (a d+2 b c)}{9 b^2 d^3}+\frac{2 (c+d x)^{11/2}}{11 b d^3} \]

Antiderivative was successfully verified.

[In]  Int[(x^3*(c + d*x)^(5/2))/(a + b*x),x]

[Out]

(-2*a^3*(b*c - a*d)^2*Sqrt[c + d*x])/b^6 - (2*a^3*(b*c - a*d)*(c + d*x)^(3/2))/(
3*b^5) - (2*a^3*(c + d*x)^(5/2))/(5*b^4) + (2*(b^2*c^2 + a*b*c*d + a^2*d^2)*(c +
 d*x)^(7/2))/(7*b^3*d^3) - (2*(2*b*c + a*d)*(c + d*x)^(9/2))/(9*b^2*d^3) + (2*(c
 + d*x)^(11/2))/(11*b*d^3) + (2*a^3*(b*c - a*d)^(5/2)*ArcTanh[(Sqrt[b]*Sqrt[c +
d*x])/Sqrt[b*c - a*d]])/b^(13/2)

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 54.0569, size = 197, normalized size = 0.94 \[ - \frac{2 a^{3} \left (c + d x\right )^{\frac{5}{2}}}{5 b^{4}} + \frac{2 a^{3} \left (c + d x\right )^{\frac{3}{2}} \left (a d - b c\right )}{3 b^{5}} - \frac{2 a^{3} \sqrt{c + d x} \left (a d - b c\right )^{2}}{b^{6}} + \frac{2 a^{3} \left (a d - b c\right )^{\frac{5}{2}} \operatorname{atan}{\left (\frac{\sqrt{b} \sqrt{c + d x}}{\sqrt{a d - b c}} \right )}}{b^{\frac{13}{2}}} + \frac{2 \left (c + d x\right )^{\frac{11}{2}}}{11 b d^{3}} - \frac{2 \left (c + d x\right )^{\frac{9}{2}} \left (a d + 2 b c\right )}{9 b^{2} d^{3}} + \frac{2 \left (c + d x\right )^{\frac{7}{2}} \left (a^{2} d^{2} + a b c d + b^{2} c^{2}\right )}{7 b^{3} d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**3*(d*x+c)**(5/2)/(b*x+a),x)

[Out]

-2*a**3*(c + d*x)**(5/2)/(5*b**4) + 2*a**3*(c + d*x)**(3/2)*(a*d - b*c)/(3*b**5)
 - 2*a**3*sqrt(c + d*x)*(a*d - b*c)**2/b**6 + 2*a**3*(a*d - b*c)**(5/2)*atan(sqr
t(b)*sqrt(c + d*x)/sqrt(a*d - b*c))/b**(13/2) + 2*(c + d*x)**(11/2)/(11*b*d**3)
- 2*(c + d*x)**(9/2)*(a*d + 2*b*c)/(9*b**2*d**3) + 2*(c + d*x)**(7/2)*(a**2*d**2
 + a*b*c*d + b**2*c**2)/(7*b**3*d**3)

_______________________________________________________________________________________

Mathematica [A]  time = 0.306191, size = 196, normalized size = 0.94 \[ \frac{2 a^3 (b c-a d)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x}}{\sqrt{b c-a d}}\right )}{b^{13/2}}+\frac{2 \sqrt{c+d x} \left (-3465 a^5 d^5+1155 a^4 b d^4 (7 c+d x)-231 a^3 b^2 d^3 \left (23 c^2+11 c d x+3 d^2 x^2\right )+495 a^2 b^3 d^2 (c+d x)^3+55 a b^4 d (2 c-7 d x) (c+d x)^3+5 b^5 (c+d x)^3 \left (8 c^2-28 c d x+63 d^2 x^2\right )\right )}{3465 b^6 d^3} \]

Antiderivative was successfully verified.

[In]  Integrate[(x^3*(c + d*x)^(5/2))/(a + b*x),x]

[Out]

(2*Sqrt[c + d*x]*(-3465*a^5*d^5 + 495*a^2*b^3*d^2*(c + d*x)^3 + 55*a*b^4*d*(2*c
- 7*d*x)*(c + d*x)^3 + 1155*a^4*b*d^4*(7*c + d*x) - 231*a^3*b^2*d^3*(23*c^2 + 11
*c*d*x + 3*d^2*x^2) + 5*b^5*(c + d*x)^3*(8*c^2 - 28*c*d*x + 63*d^2*x^2)))/(3465*
b^6*d^3) + (2*a^3*(b*c - a*d)^(5/2)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x])/Sqrt[b*c - a
*d]])/b^(13/2)

_______________________________________________________________________________________

Maple [B]  time = 0.017, size = 384, normalized size = 1.8 \[{\frac{2}{11\,b{d}^{3}} \left ( dx+c \right ) ^{{\frac{11}{2}}}}-{\frac{2\,a}{9\,{b}^{2}{d}^{2}} \left ( dx+c \right ) ^{{\frac{9}{2}}}}-{\frac{4\,c}{9\,b{d}^{3}} \left ( dx+c \right ) ^{{\frac{9}{2}}}}+{\frac{2\,{a}^{2}}{7\,d{b}^{3}} \left ( dx+c \right ) ^{{\frac{7}{2}}}}+{\frac{2\,ac}{7\,{b}^{2}{d}^{2}} \left ( dx+c \right ) ^{{\frac{7}{2}}}}+{\frac{2\,{c}^{2}}{7\,b{d}^{3}} \left ( dx+c \right ) ^{{\frac{7}{2}}}}-{\frac{2\,{a}^{3}}{5\,{b}^{4}} \left ( dx+c \right ) ^{{\frac{5}{2}}}}+{\frac{2\,d{a}^{4}}{3\,{b}^{5}} \left ( dx+c \right ) ^{{\frac{3}{2}}}}-{\frac{2\,{a}^{3}c}{3\,{b}^{4}} \left ( dx+c \right ) ^{{\frac{3}{2}}}}-2\,{\frac{{d}^{2}{a}^{5}\sqrt{dx+c}}{{b}^{6}}}+4\,{\frac{d{a}^{4}c\sqrt{dx+c}}{{b}^{5}}}-2\,{\frac{{a}^{3}{c}^{2}\sqrt{dx+c}}{{b}^{4}}}+2\,{\frac{{d}^{3}{a}^{6}}{{b}^{6}\sqrt{ \left ( ad-bc \right ) b}}\arctan \left ({\frac{\sqrt{dx+c}b}{\sqrt{ \left ( ad-bc \right ) b}}} \right ) }-6\,{\frac{{d}^{2}{a}^{5}c}{{b}^{5}\sqrt{ \left ( ad-bc \right ) b}}\arctan \left ({\frac{\sqrt{dx+c}b}{\sqrt{ \left ( ad-bc \right ) b}}} \right ) }+6\,{\frac{d{a}^{4}{c}^{2}}{{b}^{4}\sqrt{ \left ( ad-bc \right ) b}}\arctan \left ({\frac{\sqrt{dx+c}b}{\sqrt{ \left ( ad-bc \right ) b}}} \right ) }-2\,{\frac{{a}^{3}{c}^{3}}{{b}^{3}\sqrt{ \left ( ad-bc \right ) b}}\arctan \left ({\frac{\sqrt{dx+c}b}{\sqrt{ \left ( ad-bc \right ) b}}} \right ) } \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^3*(d*x+c)^(5/2)/(b*x+a),x)

[Out]

2/11*(d*x+c)^(11/2)/b/d^3-2/9/d^2/b^2*(d*x+c)^(9/2)*a-4/9/d^3/b*(d*x+c)^(9/2)*c+
2/7/d/b^3*(d*x+c)^(7/2)*a^2+2/7/d^2/b^2*(d*x+c)^(7/2)*a*c+2/7/d^3/b*(d*x+c)^(7/2
)*c^2-2/5*a^3*(d*x+c)^(5/2)/b^4+2/3*d/b^5*(d*x+c)^(3/2)*a^4-2/3/b^4*(d*x+c)^(3/2
)*a^3*c-2*d^2/b^6*a^5*(d*x+c)^(1/2)+4*d/b^5*a^4*c*(d*x+c)^(1/2)-2/b^4*a^3*c^2*(d
*x+c)^(1/2)+2*d^3*a^6/b^6/((a*d-b*c)*b)^(1/2)*arctan((d*x+c)^(1/2)*b/((a*d-b*c)*
b)^(1/2))-6*d^2*a^5/b^5/((a*d-b*c)*b)^(1/2)*arctan((d*x+c)^(1/2)*b/((a*d-b*c)*b)
^(1/2))*c+6*d*a^4/b^4/((a*d-b*c)*b)^(1/2)*arctan((d*x+c)^(1/2)*b/((a*d-b*c)*b)^(
1/2))*c^2-2*a^3/b^3/((a*d-b*c)*b)^(1/2)*arctan((d*x+c)^(1/2)*b/((a*d-b*c)*b)^(1/
2))*c^3

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((d*x + c)^(5/2)*x^3/(b*x + a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.22861, size = 1, normalized size = 0. \[ \left [\frac{3465 \,{\left (a^{3} b^{2} c^{2} d^{3} - 2 \, a^{4} b c d^{4} + a^{5} d^{5}\right )} \sqrt{\frac{b c - a d}{b}} \log \left (\frac{b d x + 2 \, b c - a d + 2 \, \sqrt{d x + c} b \sqrt{\frac{b c - a d}{b}}}{b x + a}\right ) + 2 \,{\left (315 \, b^{5} d^{5} x^{5} + 40 \, b^{5} c^{5} + 110 \, a b^{4} c^{4} d + 495 \, a^{2} b^{3} c^{3} d^{2} - 5313 \, a^{3} b^{2} c^{2} d^{3} + 8085 \, a^{4} b c d^{4} - 3465 \, a^{5} d^{5} + 35 \,{\left (23 \, b^{5} c d^{4} - 11 \, a b^{4} d^{5}\right )} x^{4} + 5 \,{\left (113 \, b^{5} c^{2} d^{3} - 209 \, a b^{4} c d^{4} + 99 \, a^{2} b^{3} d^{5}\right )} x^{3} + 3 \,{\left (5 \, b^{5} c^{3} d^{2} - 275 \, a b^{4} c^{2} d^{3} + 495 \, a^{2} b^{3} c d^{4} - 231 \, a^{3} b^{2} d^{5}\right )} x^{2} -{\left (20 \, b^{5} c^{4} d + 55 \, a b^{4} c^{3} d^{2} - 1485 \, a^{2} b^{3} c^{2} d^{3} + 2541 \, a^{3} b^{2} c d^{4} - 1155 \, a^{4} b d^{5}\right )} x\right )} \sqrt{d x + c}}{3465 \, b^{6} d^{3}}, \frac{2 \,{\left (3465 \,{\left (a^{3} b^{2} c^{2} d^{3} - 2 \, a^{4} b c d^{4} + a^{5} d^{5}\right )} \sqrt{-\frac{b c - a d}{b}} \arctan \left (\frac{\sqrt{d x + c}}{\sqrt{-\frac{b c - a d}{b}}}\right ) +{\left (315 \, b^{5} d^{5} x^{5} + 40 \, b^{5} c^{5} + 110 \, a b^{4} c^{4} d + 495 \, a^{2} b^{3} c^{3} d^{2} - 5313 \, a^{3} b^{2} c^{2} d^{3} + 8085 \, a^{4} b c d^{4} - 3465 \, a^{5} d^{5} + 35 \,{\left (23 \, b^{5} c d^{4} - 11 \, a b^{4} d^{5}\right )} x^{4} + 5 \,{\left (113 \, b^{5} c^{2} d^{3} - 209 \, a b^{4} c d^{4} + 99 \, a^{2} b^{3} d^{5}\right )} x^{3} + 3 \,{\left (5 \, b^{5} c^{3} d^{2} - 275 \, a b^{4} c^{2} d^{3} + 495 \, a^{2} b^{3} c d^{4} - 231 \, a^{3} b^{2} d^{5}\right )} x^{2} -{\left (20 \, b^{5} c^{4} d + 55 \, a b^{4} c^{3} d^{2} - 1485 \, a^{2} b^{3} c^{2} d^{3} + 2541 \, a^{3} b^{2} c d^{4} - 1155 \, a^{4} b d^{5}\right )} x\right )} \sqrt{d x + c}\right )}}{3465 \, b^{6} d^{3}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((d*x + c)^(5/2)*x^3/(b*x + a),x, algorithm="fricas")

[Out]

[1/3465*(3465*(a^3*b^2*c^2*d^3 - 2*a^4*b*c*d^4 + a^5*d^5)*sqrt((b*c - a*d)/b)*lo
g((b*d*x + 2*b*c - a*d + 2*sqrt(d*x + c)*b*sqrt((b*c - a*d)/b))/(b*x + a)) + 2*(
315*b^5*d^5*x^5 + 40*b^5*c^5 + 110*a*b^4*c^4*d + 495*a^2*b^3*c^3*d^2 - 5313*a^3*
b^2*c^2*d^3 + 8085*a^4*b*c*d^4 - 3465*a^5*d^5 + 35*(23*b^5*c*d^4 - 11*a*b^4*d^5)
*x^4 + 5*(113*b^5*c^2*d^3 - 209*a*b^4*c*d^4 + 99*a^2*b^3*d^5)*x^3 + 3*(5*b^5*c^3
*d^2 - 275*a*b^4*c^2*d^3 + 495*a^2*b^3*c*d^4 - 231*a^3*b^2*d^5)*x^2 - (20*b^5*c^
4*d + 55*a*b^4*c^3*d^2 - 1485*a^2*b^3*c^2*d^3 + 2541*a^3*b^2*c*d^4 - 1155*a^4*b*
d^5)*x)*sqrt(d*x + c))/(b^6*d^3), 2/3465*(3465*(a^3*b^2*c^2*d^3 - 2*a^4*b*c*d^4
+ a^5*d^5)*sqrt(-(b*c - a*d)/b)*arctan(sqrt(d*x + c)/sqrt(-(b*c - a*d)/b)) + (31
5*b^5*d^5*x^5 + 40*b^5*c^5 + 110*a*b^4*c^4*d + 495*a^2*b^3*c^3*d^2 - 5313*a^3*b^
2*c^2*d^3 + 8085*a^4*b*c*d^4 - 3465*a^5*d^5 + 35*(23*b^5*c*d^4 - 11*a*b^4*d^5)*x
^4 + 5*(113*b^5*c^2*d^3 - 209*a*b^4*c*d^4 + 99*a^2*b^3*d^5)*x^3 + 3*(5*b^5*c^3*d
^2 - 275*a*b^4*c^2*d^3 + 495*a^2*b^3*c*d^4 - 231*a^3*b^2*d^5)*x^2 - (20*b^5*c^4*
d + 55*a*b^4*c^3*d^2 - 1485*a^2*b^3*c^2*d^3 + 2541*a^3*b^2*c*d^4 - 1155*a^4*b*d^
5)*x)*sqrt(d*x + c))/(b^6*d^3)]

_______________________________________________________________________________________

Sympy [A]  time = 75.5689, size = 347, normalized size = 1.66 \[ - \frac{2 a^{3} \left (c + d x\right )^{\frac{5}{2}}}{5 b^{4}} + \frac{2 a^{3} \left (a d - b c\right )^{3} \left (\begin{cases} \frac{\operatorname{atan}{\left (\frac{\sqrt{c + d x}}{\sqrt{\frac{a d - b c}{b}}} \right )}}{b \sqrt{\frac{a d - b c}{b}}} & \text{for}\: \frac{a d - b c}{b} > 0 \\- \frac{\operatorname{acoth}{\left (\frac{\sqrt{c + d x}}{\sqrt{\frac{- a d + b c}{b}}} \right )}}{b \sqrt{\frac{- a d + b c}{b}}} & \text{for}\: c + d x > \frac{- a d + b c}{b} \wedge \frac{a d - b c}{b} < 0 \\- \frac{\operatorname{atanh}{\left (\frac{\sqrt{c + d x}}{\sqrt{\frac{- a d + b c}{b}}} \right )}}{b \sqrt{\frac{- a d + b c}{b}}} & \text{for}\: \frac{a d - b c}{b} < 0 \wedge c + d x < \frac{- a d + b c}{b} \end{cases}\right )}{b^{6}} + \frac{2 \left (c + d x\right )^{\frac{11}{2}}}{11 b d^{3}} + \frac{\left (c + d x\right )^{\frac{9}{2}} \left (- 2 a d - 4 b c\right )}{9 b^{2} d^{3}} + \frac{\left (c + d x\right )^{\frac{7}{2}} \left (2 a^{2} d^{2} + 2 a b c d + 2 b^{2} c^{2}\right )}{7 b^{3} d^{3}} + \frac{\left (c + d x\right )^{\frac{3}{2}} \left (2 a^{4} d - 2 a^{3} b c\right )}{3 b^{5}} + \frac{\sqrt{c + d x} \left (- 2 a^{5} d^{2} + 4 a^{4} b c d - 2 a^{3} b^{2} c^{2}\right )}{b^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**3*(d*x+c)**(5/2)/(b*x+a),x)

[Out]

-2*a**3*(c + d*x)**(5/2)/(5*b**4) + 2*a**3*(a*d - b*c)**3*Piecewise((atan(sqrt(c
 + d*x)/sqrt((a*d - b*c)/b))/(b*sqrt((a*d - b*c)/b)), (a*d - b*c)/b > 0), (-acot
h(sqrt(c + d*x)/sqrt((-a*d + b*c)/b))/(b*sqrt((-a*d + b*c)/b)), ((a*d - b*c)/b <
 0) & (c + d*x > (-a*d + b*c)/b)), (-atanh(sqrt(c + d*x)/sqrt((-a*d + b*c)/b))/(
b*sqrt((-a*d + b*c)/b)), ((a*d - b*c)/b < 0) & (c + d*x < (-a*d + b*c)/b)))/b**6
 + 2*(c + d*x)**(11/2)/(11*b*d**3) + (c + d*x)**(9/2)*(-2*a*d - 4*b*c)/(9*b**2*d
**3) + (c + d*x)**(7/2)*(2*a**2*d**2 + 2*a*b*c*d + 2*b**2*c**2)/(7*b**3*d**3) +
(c + d*x)**(3/2)*(2*a**4*d - 2*a**3*b*c)/(3*b**5) + sqrt(c + d*x)*(-2*a**5*d**2
+ 4*a**4*b*c*d - 2*a**3*b**2*c**2)/b**6

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.318899, size = 412, normalized size = 1.97 \[ -\frac{2 \,{\left (a^{3} b^{3} c^{3} - 3 \, a^{4} b^{2} c^{2} d + 3 \, a^{5} b c d^{2} - a^{6} d^{3}\right )} \arctan \left (\frac{\sqrt{d x + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{\sqrt{-b^{2} c + a b d} b^{6}} + \frac{2 \,{\left (315 \,{\left (d x + c\right )}^{\frac{11}{2}} b^{10} d^{30} - 770 \,{\left (d x + c\right )}^{\frac{9}{2}} b^{10} c d^{30} + 495 \,{\left (d x + c\right )}^{\frac{7}{2}} b^{10} c^{2} d^{30} - 385 \,{\left (d x + c\right )}^{\frac{9}{2}} a b^{9} d^{31} + 495 \,{\left (d x + c\right )}^{\frac{7}{2}} a b^{9} c d^{31} + 495 \,{\left (d x + c\right )}^{\frac{7}{2}} a^{2} b^{8} d^{32} - 693 \,{\left (d x + c\right )}^{\frac{5}{2}} a^{3} b^{7} d^{33} - 1155 \,{\left (d x + c\right )}^{\frac{3}{2}} a^{3} b^{7} c d^{33} - 3465 \, \sqrt{d x + c} a^{3} b^{7} c^{2} d^{33} + 1155 \,{\left (d x + c\right )}^{\frac{3}{2}} a^{4} b^{6} d^{34} + 6930 \, \sqrt{d x + c} a^{4} b^{6} c d^{34} - 3465 \, \sqrt{d x + c} a^{5} b^{5} d^{35}\right )}}{3465 \, b^{11} d^{33}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((d*x + c)^(5/2)*x^3/(b*x + a),x, algorithm="giac")

[Out]

-2*(a^3*b^3*c^3 - 3*a^4*b^2*c^2*d + 3*a^5*b*c*d^2 - a^6*d^3)*arctan(sqrt(d*x + c
)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*b^6) + 2/3465*(315*(d*x + c)^(11
/2)*b^10*d^30 - 770*(d*x + c)^(9/2)*b^10*c*d^30 + 495*(d*x + c)^(7/2)*b^10*c^2*d
^30 - 385*(d*x + c)^(9/2)*a*b^9*d^31 + 495*(d*x + c)^(7/2)*a*b^9*c*d^31 + 495*(d
*x + c)^(7/2)*a^2*b^8*d^32 - 693*(d*x + c)^(5/2)*a^3*b^7*d^33 - 1155*(d*x + c)^(
3/2)*a^3*b^7*c*d^33 - 3465*sqrt(d*x + c)*a^3*b^7*c^2*d^33 + 1155*(d*x + c)^(3/2)
*a^4*b^6*d^34 + 6930*sqrt(d*x + c)*a^4*b^6*c*d^34 - 3465*sqrt(d*x + c)*a^5*b^5*d
^35)/(b^11*d^33)